# Sensitivity and Uncertainty Analysis of Physical Parameterization and Initial Conditions on Meteorological Variables and CO<sub>2</sub> Mole Fractions



Liza I. Díaz-Isaac<sup>1</sup>, Thomas Lauvaux<sup>1</sup>, Kenneth J. Davis<sup>1</sup>, Natasha Miles<sup>1</sup>, Scott Richardson<sup>1</sup>, Marc Bocquet<sup>2</sup>

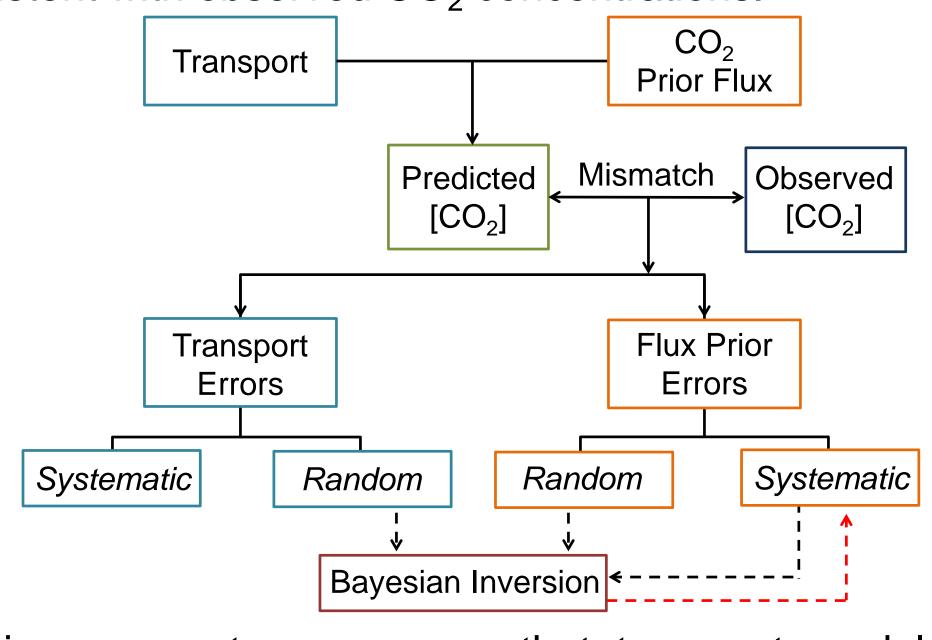
<sup>1</sup>The Pennsylvania State University, <sup>2</sup>Université Paris-Est

Contact: Izd120@psu.edu

Support: This research was supported by NASA Terrestrial Ecosystems and Carbon Cycle Program, NASA's Earth Venture Suborbital Program and Alfred P. Sloan Graduate Fellowship.

#### Motivation

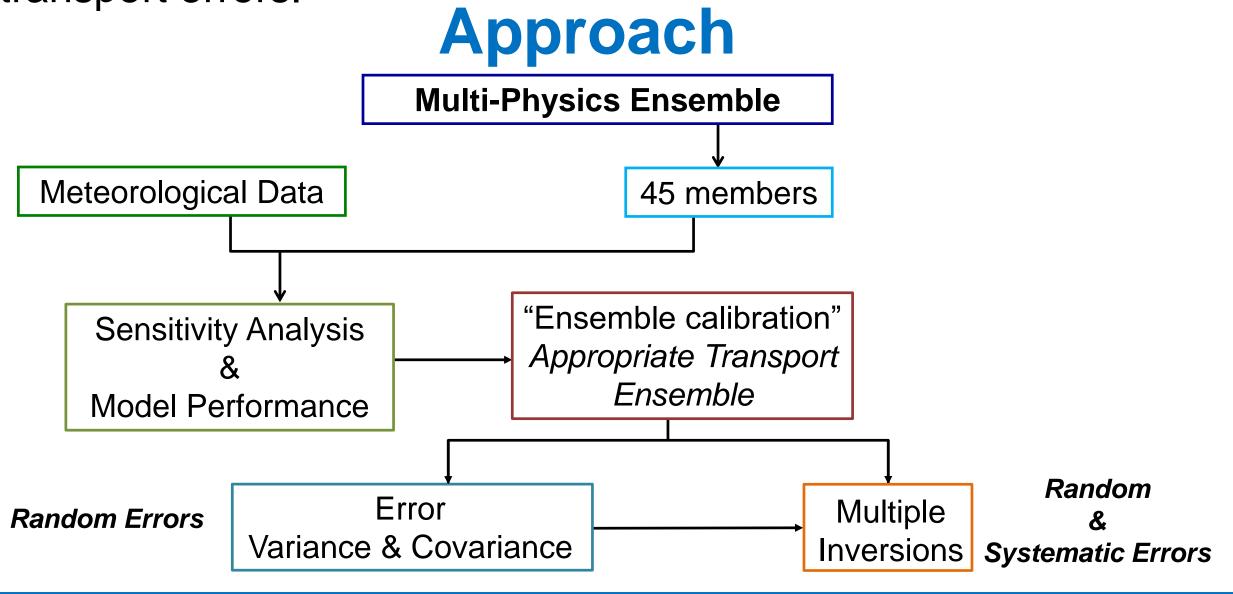
 Atmospheric inversions uses atmospheric transport models to estimate carbon fluxes by adjusting these fluxes to be optimally consistent with observed CO<sub>2</sub> concentrations.



- The inverse system assumes that transport models are only affected by random errors and that systematic errors are unique to prior fluxes.
- This method assumes that the atmospheric transport model uncertainties are known. This leads to model errors that propagate to inverse (or posterior) fluxes, limiting the quality of the optimization.
- The atmospheric inverse system will be more reliable if the atmospheric transport errors are quantified rigorously and if the transport model is unbiased.

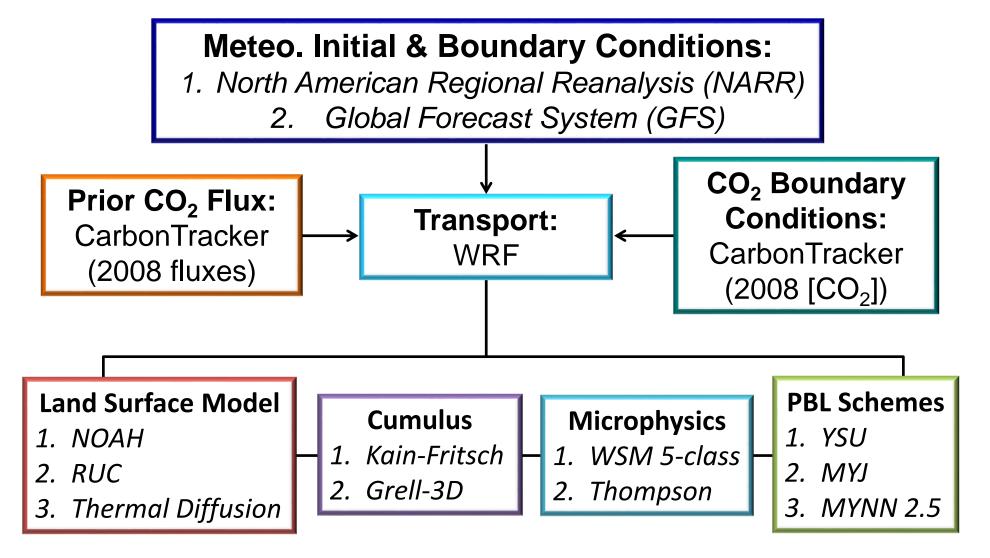
## Objectives

- Quantify the impact of both physics parameterizations and meteorological reanalyses on CO<sub>2</sub> mole fractions.
- Quantify transport errors and explore how sensitive they are to the physics parameterization and reanalysis product.
- Generate a calibrated atmospheric transport ensemble with accuracy and spread that represent systematic and random transport errors.



#### **Multi-Physics Ensemble**

- Our 45-member ensemble is created with the Weather Research and Forecasting (WRF) model that includes the chemistry module (WRF-Chem).
- This ensemble was built using different physical parameterizations and meteorological initial conditions (IC) and lateral boundary conditions (LBC) (see diagram).



Domain: Centered in Iowa, covering 1600 km × 1600 km, with 10 km grid resolution

CO<sub>2</sub> Flux and LBC: CarbonTracker (CT) data assimilation system developed at NOAA (Peters et al., 2007)

Period: June 17 to July 21 of 2008

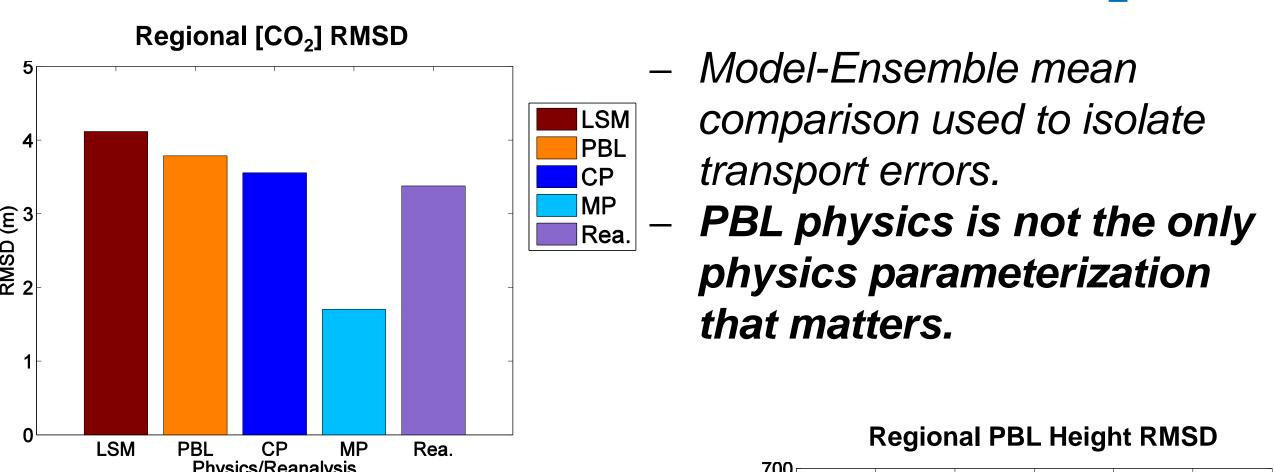
#### Data

- To evaluate and calibrate the ensemble we use observations from 14 rawinsonde sites (*red circles* in the map).
- Wind speed, wind direction and planetary boundary layer height (PBLH) data was evaluated at 0000 UTC.
- PBL depth was estimated using the virtual potential temperature gradient  $(∇θ_ν)$  ≥ 0.2 K/m.

# Minnesota South Dakota Nebraska Nebraska Missouri Kentucky Oklahoma Arkansas Arkansas -100 -95 -90 -85

# Sensitivity Analysis & Model Performance

## Impact of Transport Errors on [CO<sub>2</sub>]

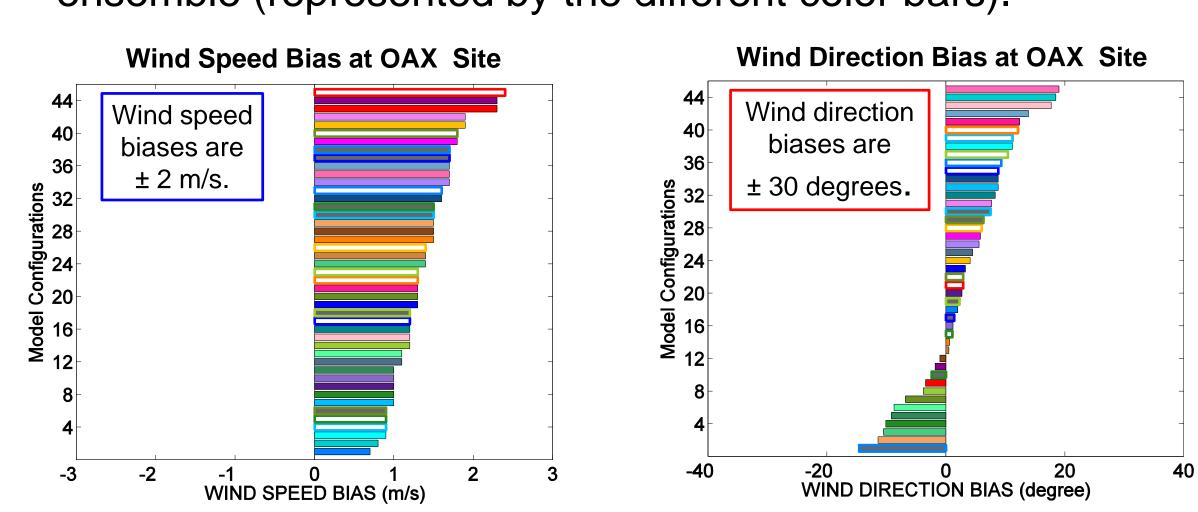


- LSMs, PBL schemes, Cumulus parameterizations (CP) and Reanalysis all have a big impact on wind speed, wind directions and PBL 300 height errors.
- The order of impact in PBL height errors is similar to the CO<sub>2</sub> mole fraction errors.

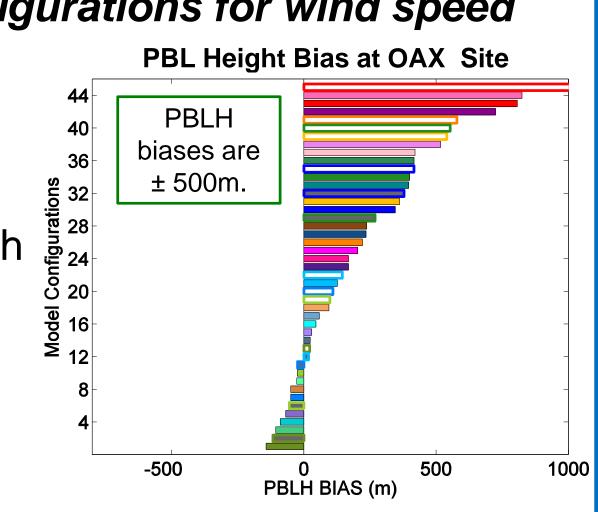
#### 700 600 500 400 200 100 LSM PBL CP MP Rea. Physics/Reanalysis

#### Unbiased Model

 We estimated the bias over a month for each member of the ensemble (represented by the different color bars).



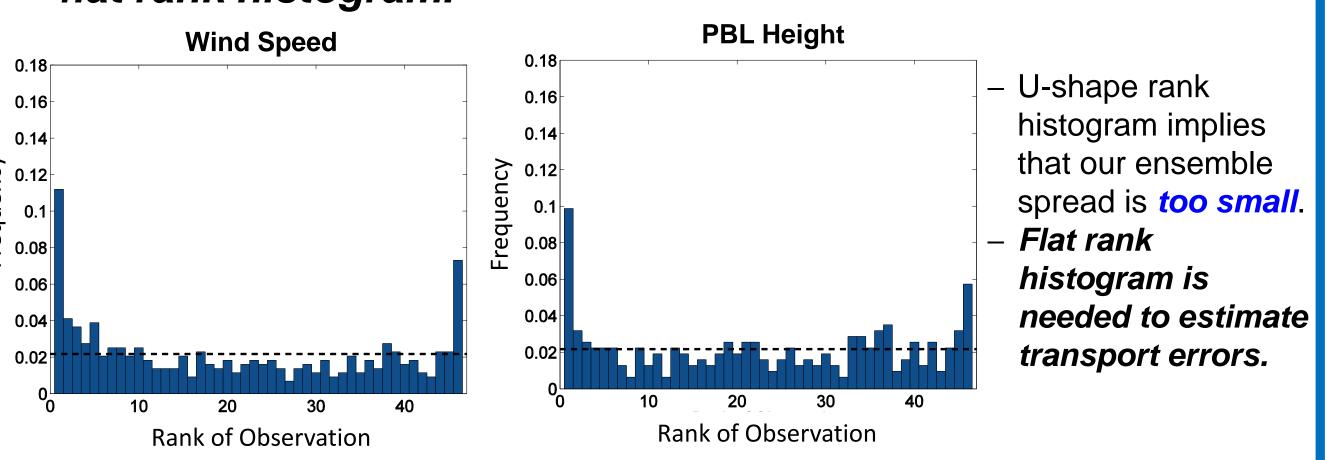
- For wind speed most of the sites shows a positive bias, whereas for wind direction most of the sites show both positive and negative bias.
- It is hard to define the best configurations for wind speed and wind direction.
   PBL Height Bias at OAX Site
- For PBLH most of the sites shows both positive and negative bias.
- PBL height bias is controlled by both the LSMs and PBL schemes.
- PBL height biases can be sorted by model configuration.



# **Ensemble Calibration**

#### Rank Histogram Score & Bias

Rank Histogram: This tool is used to diagnose the bias and the dispersion of the ensemble. An ensemble that is not biased and neither underdispersive nor overdispersive will have a flat rank histogram.



- Rank Histogram Score (RHS): This metric is used to measure the flatness of the rank histogram and should be close to 1.
- **Bias:** The bias of the residuals (model-data difference) is used as an additional criteria to choose a sub-ensemble that has an equal or lower bias than the full ensemble.

| Variable              | RHS | Bias       |
|-----------------------|-----|------------|
| Wind Speed            | 6.1 | 0.66 m     |
| <b>Wind Direction</b> | 7.2 | -0.41 deg. |
| PBL Height            | 3.2 | 98 m       |
|                       |     |            |

- The RHS of the full ensemble is higher than one for all the variables.
   PBI height shows the lowest RHS
- PBL height shows the lowest RHS.
  Wind speed and PBL height have positive bias and wind direction shows a negative bias.

#### Ensemble Calibration Technique

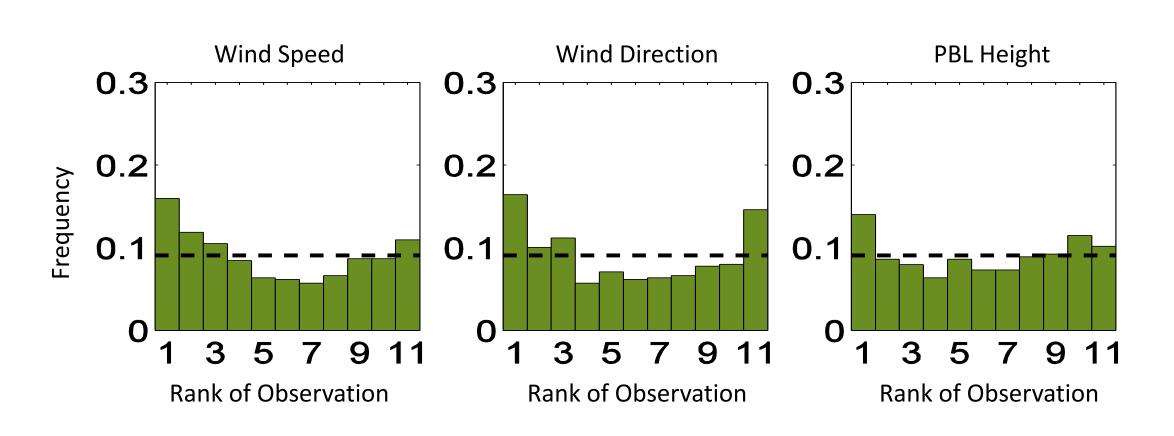
#### Simulated Annealing (SA):

- General probabilistic local search algorithm proposed by Kirkpatrck et al., (1983).
- This optimization method uses a cost function to find the global minimum or optimal solution, in our case a sub-ensemble with a rank histogram score close to one.

#### Calibrated Ensemble

- SA technique was applied to calibrate our ensemble for 10, 8 and 5-member sub-ensembles (Garaud and Mallet, 2011).
- The selected sub-ensemble, should have a RHS and bias smaller than the full ensemble.

#### Calibrated Ensemble 10-members:



- Wind speed and wind direction still generate a U-shape rank histogram with this calibrated ensemble.
- PBL height has a flat rank histogram and the smallest RHS
- compare to the rest of the variables.
  Simulated Annealing (green) allows us to find a sub-ensemble that has a smaller bias than the full ensemble (blue above).

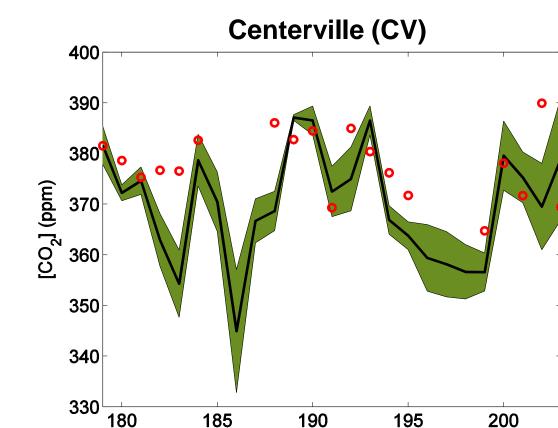
| S.<br>S    | Variable | RHS | Bias       |
|------------|----------|-----|------------|
| <b>3</b> [ | WSPD     | 4.6 | 0.53 m/s   |
|            | WDIR     | 6.3 | -0.21 deg. |
|            | PBLH     | 1.6 | 78 m       |

#### **Synthesis**

Not only the PBL schemes have a significant impact in CO<sub>2</sub> mole fractions, other physics schemes such as LSM and Cumulus parameterizations contribute to CO<sub>2</sub> variability.

- The configuration performance varies over the domain, therefore making it hard to select the best configuration.
- PBL depth bias can be reduced, therefore a best configuration (less bias) exists for this factor alone.
- From a 45-members ensemble, we were able to create a sub-ensemble of 10-members that shows an appropriate spread and smaller bias.

#### Future Work: Evaluate Calibrated Ensemble



Transport errors show large temporal variability Interpretation of hourly ensemble-based error variances:

- Model-data differences larger than transport errors: flux signals still present
- Observations within transport error bounds: no flux signal left